Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica

John Wiley & Sons, 20 aug. 2018 - 377 sidor
0 Recensioner
Recensionerna verifieras inte, men Google söker efter och tar bort falskt innehåll när det upptäcks
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals.
Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics.
The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.

Så tycker andra - Skriv en recension

Vi kunde inte hitta några recensioner.


Part One Basics of Group Theory 9
Basics Abstract Group Theory
Discrete Symmetry Groups in SolidState Physics and Photonics
B 3
Representation Theory
Symmetry and Representation Theory in kSpace
Generalization to Include the Spin
Solution of MAXWELLs Equations
TwoDimensional Photonic Crystals
ThreeDimensional Photonic Crystals
Group Theory of Vibrational Problems
Landau Theory of Phase Transitions of the Second Kind
Appendix B Remarks on Databases

Electronic Structure Calculations

Andra upplagor - Visa alla

Vanliga ord och fraser

Om författaren (2018)

Wolfram Hergert, extraordinary professor in Computational Physics, is member of the Theoretical Physics group at University Halle-Wittenberg, Germany. Main subjects of his work are solid state theory, electronic and magnetic structure of nanostructures and photonics. Prof. Hergert has experience in teaching group theory and in applying Mathematica to physical problems. He has published in renowned journals, like Nature and Physical Review Letters, and edited a books on Computational Materials Science and Mie Theory. He is also coauthor of a book on Quantum Theory.

Matthias Geilhufe studied physics at the Martin Luther University Halle-Wittenberg (Germany) with specialization in theoretical and computational physics. From 2012-2015 he was employed as a PhD student at the Max Planck Institute of Microstructure Physics in Halle. In 2015 he obtained his PhD at the Martin Luther University Halle-Wittenberg. Currently, he is working at the Nordita Institute in Stockholm, Sweden. His work is based on the investigation of electronic and magnetic properties of complex materials. For his research, methods based on group theory or density functional theory are applied.

Bibliografisk information