Sidor som bilder
PDF
ePub

one or two feet in the course of half a century, the minute topography of the skär is entirely altered. To a stranger, indeed, who revisits it after an interval of many years, its general aspect remains the same; but the inhabitant finds that he can no longer penetrate with his boat through channels where he formerly passed; and he can tell of countless other changes in the height and breadth of isolated rocks, now exposed, but once only seen through the clear water.

The rocks of gneiss, mica-schist, and quartz, are usually very hard on this coast, slow to decompose, and, when protected from the breakers, remaining for ages unaltered in their form. Hence it is easy to mark the stages of their progressive emergence by the aid of natural and artificial marks imprinted on them. Besides the summits of fixed rocks, there are numerous erratic blocks of vast size strewed over the shoals and islands in the skär, which have been probably drifted by ice in the manner before suggested.* All these are observed to have increased in height and dimensions within the last half century. Some, which were formerly known as dangerous sunken rocks, are now only hidden when the water is highest. On their first appearance, they usually present a smooth, bare, rounded protuberance, a few feet or yards in diameter; and a single sea-gull often appropriates to itself this resting-place, resorting there to devour its prey. Similar points, in the mean time, have grown to long reefs, and are constantly whitened by a multitude of sea fowl; while others have been changed from a reef, annually submerged, to a small islet, on which a few lichens, a fir-seedling, and a few blades of grass, attest that the shoal has at length been fairly changed into dry land. Thousands of wooded islands around show the greater alterations which time can work. In the course of centuries also, the spaces intervening between the existing islands may be laid dry, and become grassy plains encircled by heights well clothed with lofty firs. This last step of the process, by which long fiords and narrow channels, once separating wooded islands, are deserted by the sea, has been exemplified within the memory of living witnesses on several parts of the coast.

Had the apparent fall of the waters been observed in the Baltic only, we might have endeavoured to explain the phenomenon by local causes affecting that sea alone. For instance, the channel by which the Baltie discharges its surplus waters into the Atlantic, might be supposed to have been gradually widened and deepened by the waves and currents, in which case a fall of the water, like that before alluded to in Lake Maeler, might have occurred. But the lowering of level would in that case have been uniform and universal, and the waters could not have sunk at Torneo, while they retained their former level at Copenhagen. Such an explanation is also untenable on other grounds; for it is a fact, as Celsius long

* See pp. 174. 439,

ago affirmed, that the alteration of level extends to the western shores of Sweden, bordering the ocean. The signs of elevation observed between Uddevalla and Gothenburg are as well established as those on the shores of the Bothnian Gulf. Among the places where they may be studied, are the islands of Marstrand and Gulholmen, the last-mentioned locality being one of those particularly pointed out by Celsius.

The inhabitants there and elsewhere affirm, that the rate of the sinking of the sea (or elevation of land) varies in different and adjoining districts, being greatest at points where the coast is low. But in this they are deceived; for they measure the amount of rise by the area gained, which is most considerable where the land descends with a gentle slope into the sea. In the same manner, some advocates of the Celsian theory formerly appealed to the increase of lands near the mouths of rivers, not sufficiently adverting to the fact, that if the bed of the sea is rising, the change will always be most sensible where the bottom has been previously rendered shallow; whereas, at a distance from these points, where the scarped granitic cliffs plunge at once into deep water, a much greater amount of elevation is necessary to produce an equally conspicuous change.

As to the area in northern Europe which is subject to this slow upheaving movement, we have not as yet sufficient data for estimating it correctly. It seems probable, however, that it reaches from Gothenburg to Torneo, and from thence to the North Cape, the rate of elevation increasing always as we proceed farther northwards. The two extremities of this line are more than a thousand geographical miles distant from each other; and as both terminate in the ocean, we know not how much farther the motion may be prolonged under water. As to the breadth of the tract, its limits are equally uncertain, though it evidently extends across the widest parts of the Gulf of Bothnia, and may probably stretch far into the interior, both of Sweden and Finland. Now, if the elevation continue, a larger part of the Gulf of Bothnia will be turned into land, as also more of the ocean off the west coast of Sweden between Gothenburg and Uddevalla; and, on the other hand, if the change has been going on for thousands of years at the rate of several feet in a century, large tracts of what is now land must have been submarine at periods comparatively modern. It is natural therefore to inquire whether there are any signs of the recent sojourn of the sea on districts now inland? The answer is most satisfactory. Near Uddevalla and the neighbouring coastland, we find upraised deposits of shells belonging to species such as now live in the ocean; while on the opposite or eastern side of Sweden, near Stockholm, Gefle, and other places bordering the Bothnian Gulf, there are analogous beds containing shells of species characteristic of the Baltic.

Von Buch announced, in 1807, that he had discovered in Norway and at Uddevalla in Sweden, beds of shells of existing species, at considerable heights above the sea. Since that time, other naturalists have confirmed

his observation; and, according to Ström, deposits occur at an elevation of more than 400 feet above the sea in the northern part of Norway. M. Alex. Brongniart, when he visited Uddevalla, ascertained that one of the principal masses of shells, that of Capellbacken, is raised more than 200 feet above the sea, resting on rocks of gneiss, all the species being identical with those now inhabiting the contiguous ocean. The same naturalist also stated that on examining with care the surface of the gneiss, immediately above the ancient shelly deposit, he found barnacles (balani) adhering to the rocks, showing that the sea had remained there for a long time. I was fortunate enough to be able to verify this observation by finding, in the summer of 1834, at Kured, about two miles north of Uddevalla, and at the height of more than 100 feet above the sea, a surface of gneiss newly laid open by the partial removal of a mass of shells used largely in the district for making lime and repairing the roads. So firmly did these barnacles adhere to the gneiss that I broke off portions of the rock with the shells attached. The face of the gneiss was also encrusted with small zoophytes (Cellepora? Lam.), but had these or the barnacles been exposed in the atmosphere ever since the elevation of the rocks above the sea, they would probably have decomposed and been obliterated.

The town of Uddevalla stands at the head of a narrow creek overhung by steep and barren rocks of gneiss, of which all the adjacent country is composed, except in the low grounds and bottoms of valleys, where strata of sand, clay, and marl frequently hide the fundamental rocks. To these newer and horizontal deposits the fossil shells above mentioned belong, and similar marine remains are found at various heights above the sea on the opposite island of Orust. The extreme distance from the sea to which such fossils extend is as yet unknown, but they have been already found at Trollhättan in digging the canal there, and still farther inland on the northern borders of lake Wener, fifty miles from the sea, at an elevation of 200 feet, near Lake Rogvarpen.

To pass to the Baltic: I observed near its shores at Södertelje, sixteen miles S. W. of Stockholm, strata of sand, clay, and marl, more than 100 feet high, and containing shells of species now inhabiting the Bothnian Gulf. These consist partly of marine and partly of freshwater species; but they are few in number, the brackishness of the water appearing to be very unfavourable to the development of testacea. The most abundant species are the common cockle, and the common muscle and periwinkle of our shores (Cardium edule, Mytilus edulis, and Littorina littorea), together with a small tellina (T. Baltica), and a few minute univalves allied to Paludina ulva. These live in the same waters as a Lymneus, a Neritina (N. fluviatilis), and some other freshwater shells.

But the marine mollusks of the Baltic above mentioned, although very numerous in individuals, are dwarfish in size, scarcely ever attaining a third of the average dimensions which they acquire in the salter waters

of the ocean. By this character alone a geologist would generally be able to recognise an assemblage of Baltic fossils as distinguished from those derived from a deposit in the ocean. The absence also of oysters, barnacles, whelks, scallops, limpets (ostrea, balanus, buccinum, pecten, patella), and many other forms abounding alike in the sea near Uddevalla, and in the fossilliferous deposits of modern date on that coast, supplies an additional negative character of the greatest value, distinguishing assemblages of Baltic from those of oceanie shells. Now the strata containing Baltic shells are found in many localities near Stockholm, Upsala, and Gefle, and will probably be discovered every where around the borders of the Bothnian Gulf; for I have seen similar remains brought from Finland, in marl resembling that found near Stockholm. The utmost distance to which these deposits have yet been traced inland, is on the southern shores of Lake Maeler, at a place seventy miles from the sea.*

As no accurate observations on the rise of the Swedish coast refer to periods more remote than a century and a-half from the present time, and as traditional information, and that derived from ancient buildings on the coast, do not enable the antiquary to trace back any monuments of change for more than five or six centuries, we cannot declare whether the rate of the upheaving force is uniform during very long periods. In those districts where the fossil shells are found at the height of more than 200 feet above the ocean, as at Uddevalla, Orust, and Lake Rogvarpen, the present rate of rise seems less than four feet in a century. Even at that rate it would have required five thousand years to lift up those deposits. But as the movement is now very different in different places, it may also have varied much in intensity at different periods.

Whether any of the land in Norway is now rising must be determined by future investigations. Marine fossil shells, of recent species, have been collected from inland places near Drontheim; but Mr. Everest, in his Travels through Norway," informs us that the small island of Munkholm, which is an insulated rock in the harbour of Drontheim, affords conclusive evidence of the land having in that region remained stationary for the last eight centuries. The area of this isle does not exceed that of a small village, and by an official survey, its highest point has been determined to be twenty-three feet above the mean high water mark, that is, the mean between neap and spring tides. Now, a monastery was founded there by Canute the Great, A.D. 1028, and thirty-three years before that time it was in use as a common place of execution. According to the assumed average rate of rise in Sweden (about forty inches in a century), we should be obliged to suppose that this island had been three feet eight inches below high-water mark when it was originally chosen as the site of the monastery.

But we have not only to learn whether the motion proceeds always at

* Phil. Trans., 1835, part i.

the same rate, but also whether it has been uniformly in one direction. The level of the land may oscillate; and for centuries there may be a depression, and afterwards a re-elevation, of the same district. This idea is rendered the more probable by the proofs lately brought to light by two Danish investigators, Dr. Pingel and Captain Graah, of the sinking down of part of the west coast of Greenland, for a space of more than 600 miles from north to south. The observations alluded to were made by Captain Graah during a survey of Greenland in 1823-24; and afterwards in 1828-29; those by Dr. Pingel were made in 1830-32. It appears from various signs and traditions, that the coast has been subsiding for the last four centuries from the Firth called Igalliko in lat. 60° 43' N. to Disco Bay, extending to nearly the 69th degree of north latitude. Ancient buildings on low rocky islands and on the shore of the mainland have been gradually submerged, and experience has taught the aboriginal Greenlander never to build his hut near the water's edge. In one case, the Moravian settlers have been obliged more than once to move inland the poles upon which their large boats were set, and the old poles still remain beneath the water as silent witnesses of the change.*

Some phenomena in the neighbourhood of Stockholm, appear to me only explicable on the supposition of the alternate rising and sinking of the ground since the country was inhabited by man. In digging a canal, in 1819, at Södertelje, about sixteen miles to the south of Stockholm, to unite Lake Maeler with the Baltic, marine strata, containing fossil shells of Baltic species, were passed through. At a depth of about sixty feet, they came down upon what seems to have been a buried fishing-hut, constructed of wood, in a state of decomposition, which soon crumbled away on exposure to the air. The lowest part, however, which had stood on a level with the sea, was in a more perfect state of preservation. On the floor of this hut was a rude fireplace, consisting of a ring of stones, and within this were cinders and charred wood. On the outside lay boughs of the fir, cut as with an axe, with the leaves or needles still attached. It seems impossible to explain the position of this buried hut, without imagining, as in the case of the Temple of Serapis (see p. 426), first, a subsidence to the depth of more than sixty feet, then a re-elevation. During the period of submergence, the hut must have become covered over with gravel and shelly marl, under which not only the hut, but seve ral vessels also were found, of a very antique form, and having their timbers fastened together by wooden pegs instead of nails.†

The probable cause of these movement, whether of elevation or depression, will be more appropriately discussed in the following chapters,

*

See Proceedings of Geol. Soc., No. 42, p. 208. I also conversed with Dr. Pingel on the subject at Copenhagen in 1834.

See the paper before referred to, Phil. Trans., 1835, part i.

« FöregåendeFortsätt »