Sidor som bilder
PDF
ePub

tation ceases, because the parallel physico-chemical phenomenon has stopped. In vegetables the manifestation of vital phenomena is linked in the same way with conditions of warmth, moisture and light in the surrounding environment. It is the same again with cold-blooded animals; the phenomena of life are benumbed or stimulated according to the same conditions. Now the influences producing or retarding vital manifestations in living beings are exactly the same as those which produce, accelerate or retard manifestations of physico-chemical phenomena in inorganic bodies, so that instead of following the example of the vitalists in seeing a kind of opposition or incompatibility between the conditions of vital manifestations and the conditions of physico-chemical manifestations, we must note, on the contrary, in these two orders of phenomena a complete parallelism and a direct and necessary relation. Only in warm-blooded animals do the conditions of the organism and those of the surrounding environment seem to be independent; in these animals indeed the manifestation of vital phenomena no longer suffers the alternations and variations that the cosmic conditions display; and an inner force seems to join combat with these influences and in spite of them to maintain the vital forces in equilibrium. But fundamentally it is nothing of the sort; and the semblance depends simply on the fact that, by the more complete protective mechanism which we shall have occasion to study, the warm-blooded animal's internal environment comes less easily into equilibrium with the external cosmic environment. External influences, therefore, bring about changes and disturbances in the intensity of organic functions only in so far as the protective system of the organism's internal environment becomes insufficient in given conditions.

III. PHYSIOLOGICAL PHENOMENA IN THE HIGHER ANIMALS TAKE PLACE IN PERFECTED INTERNAL ORGANIC ENVIRONMENTS ENDOWED WITH CONSTANT PHYSICO-CHEMICAL PROPERTIES

Thoroughly to understand the application of experimentation to living beings, it is of the first importance to reach a definite judgment on the ideas which we are now explaining. When we examine a higher, i.e., a complex living organism, and see it fulfill its different functions in the general cosmic environment common to all the phe

[ocr errors]

nomena of nature, it seems to a certain extent independent of this environment. But this appearance results simply from our deluding ourselves about the simplicity of vital phenomena. The external phenomena which we perceive in the living being are fundamentally very complex; they are the resultant of a host of intimate properties of organic units whose manifestations are linked together with the physico-chemical conditions of the internal environment in which they are immersed. In our explanations we suppress this inner environment and see only the outer environment before our eyes. But the real explanation of vital phenomena rests on study and knowledge of the extremely tenuous and delicate particles which form the organic units of the body. This idea, long ago set forth in biology by great physiologists, seems more and more true in proportion as the science of the organization of living beings makes progress. We must, moreover, learn that the intimate particles of an organism exhibit their vital activity only through a necessary physicochemical relation with immediate environments which we must also study and know. Otherwise, if we limit ourselves to the survey of total phenomena visible from without, we may falsely believe that a force in living beings violates the physico-chemical laws of the general cosmic environment, just as an untaught man might believe that some special force in a machine, rising in the air or running along the ground, violated the laws of gravitation. Now, a living organism is nothing but a wonderful machine endowed with the most marvellous properties and set going by means of the most complex and delicate mechanism. There are no forces opposed and struggling one with another; in nature there can be only order and disorder, harmony or discord.

In experimentation on inorganic bodies, we need take account of only one environment, the external cosmic environment; while in the higher living animals, at least two environments must be considered, the external or extra-organic environment and the internal or intraorganic environment. In my course on physiology at the Faculty of Sciences, I explain each year these ideas on organic environment,new ideas which I regard as fundamental in general physiology; they are also necessarily fundamental in general pathology, and the same thoughts will guide us in adapting experimentation to living beings, For, as I have said elsewhere, the great difficulties that we meet in experimentally determining vital phenomena and in applying suit

able means to altering them are caused by the complexity involved in the existence of an internal organic environment.1

Physicists and chemists experimenting on inert bodies need consider only the external environment; by means of the thermometer, barometer and other instruments used in recording and measuring the properties of the external environment, they can always set themselves in equivalent conditions. For physiologists these instruments no longer suffice; and yet the internal environment is just the place where they should use them. Indeed, the internal environment of living beings is always in direct relation with the normal or pathological vital manifestations of organic units. In proportion as we ascend the scale of living beings, the organism grows more complex, the organic units become more delicate and require a more perfected internal environment. The circulating liquids, the blood serum and the intra-organic fluids all constitute the internal environment.

In living beings the internal environment, which is a true product of the organism, preserves the necessary relations of exchange and equilibrium with the external cosmic environment; but in proportion as the organism grows more perfect, the organic environment becomes specialized and more and more isolated, as it were, from the surrounding environment. In vegetables and in cold-blooded animals, as we have said, this isolation is less complete than in warm-blooded animals; in the latter the blood serum maintains an almost fixed and constant temperature and composition. But these differing conditions do not constitute differences of nature in different living beings; they are merely improvements in the isolating and protecting mechanisms of their environment. Vital manifestations in animals vary only because the physico-chemical conditions of their internal environments vary; thus a mammal, whose blood has been chilled either by natural hibernation or by certain lesions of the nervous system, closely resembles a really cold-blooded animal in the properties of its tissues.

To sum up, from what has been said we can gain an idea of the enormous complexity of vital phenomena and of the almost insuperable difficulties which their accurate determination opposes to physiologists forced to carry on experimentation in the internal or organic

'Claude Bernard, Leçons sur la physiologie et la pathologie du système nerveux. Leçon d'ouverture, Dec. 17, 1856. Paris, 1858, Vol. I.—Cours de pathologie expérimentale. (The Medical Times, 1860.)

environments. These obstacles, however, cannot terrify us if we are thoroughly convinced that we are on the right road. Absolute determinism exists indeed in every vital phenomenon; hence biological science exists also; and consequently the studies to which we are devoting ourselves will not all be useless. General physiology is the basic biological science toward which all others converge. Its problem is to determine the elementary condition of vital phenomena. Pathology and therapeutics also rest on this common foundation. By normal activity of its organic units, life exhibits a state of health; by abnormal manifestation of the same units, diseases are characterized; and finally through the organic environment modified by means of certain toxic or medicinal substances, therapeutics enables us to act on the organic units. To succeed in solving these various problems, we must, as it were, analyze the organism, as we take apart a machine to review and study all its works; that is to say, before succeeding in experimenting on smaller units we must first experiment on the machinery and on the organs. We must, therefore, have recourse to analytic study of the successive phenomena of life, and must make use of the same experimental method which physicists and chemists employ in analyzing the phenomena of inorganic bodies. The difficulties which result from the complexity of the phenomena of living bodies arise solely in applying experimentation; for fundamentally the object and principles of the method are always exactly the same.

IV. THE AIM OF EXPERIMENTATION IS THE SAME IN STUDY OF
PHENOMENA OF LIVING BODIES AS IN STUDY OF PHENOMENA
OF INORGANIC BODIES

If the physicist and the physiologist differ in this, that one busies himself with phenomena taking place in inorganic matter, and the other with phenomena occurring in living matter, still they do not differ in the object which they mean to attain. Indeed, they both set themselves a common object, viz., getting back to the immediate cause of the phenomena which they are studying.

Now, what we call the immediate cause of a phenomenon is nothing but the physical and material condition in which it exists or ap pears. The object of the experimental method or the limit of every scientific research is therefore the same for living bodies as for inorganic bodies; it consists in finding the relations which connect any

phenomenon with its immediate cause, or putting it differently, it consists in defining the conditions necessary to the appearance of the phenomenon. Indeed, when an experimenter succeeds in learning the necessary conditions of a phenomenon, he is, in some sense, its master; he can predict its course and its appearance, he can promote or prevent it at will. An experimenter's object, then, is reached; through science, he has extended his power over a natural phe

nomenon.

We shall therefore define physiology thus: the science whose object it is to study the phenomena of living beings and to determine the material conditions in which they appear. Only by the analytic or experimental method can we attain the determination of the conditions of phenomena, in living bodies as well as in inorganic bodies; for we reason in identically the same way in experimenting in all the sciences.

For physiological experimenters, neither spiritualism nor materialism can exist. These words belong to a philosophy which has grown old; they will fall into disuse through the progress of science. We shall never know either spirit or matter; and if this were the proper place I should easily show that on one side, as on the other, we quickly fall into scientific negations. The conclusion is that all such considerations are idle and useless. It is our sole concern to study phenomena, to learn their material conditions and manifestations, and to determine the laws of those manifestations.

First causes are outside the realm of science; they forever escape us in the sciences of living as well as in those of inorganic bodies. The experimental method necessarily turns aside from the chimerical search for a vital principle; vital force exists no more than mineral force exists, or, if you like, one exists quite as much as the other. The word, force, is merely an abstraction which we use for linguistic convenience.

For mechanics, force is the relation of a movement to its cause. For physicists, chemists and physiologists, it is fundamentally the same. As the essence of things must always remain unknown, we can learn only relations, and phenomena are merely the results of relations. The properties of living bodies are revealed only through reciprocal organic relations. A salivary gland, for instance, exists only because it is in relation with the digestive system, and because its histological units are in certain relations one with another and with the blood. Destroy these relations by isolating the

« FöregåendeFortsätt »